
D e p t  o f  C S E ,  M B I T S   Page 1 
 

STRUCTURE OF PAGE TABLE 
 

1. Hierarchical Paging 

2. Hashed Page Tables 

3. Inverted Page Tables 

 

Hierarchical Paging 
 

 Most modern computer systems support a large logical 

address space. Then, the page table itself becomes very 

large. It may not be possible to store page tables 

contiguously. 

 One simple solution to this problem is to divide the page 

table into smaller pieces. We can accomplish this division 

in several ways. One way is to use a two-level paging 

algorithm, in which the page table itself is also paged 



D e p t  o f  C S E ,  M B I T S   Page 2 
 

 

 Consider a system with 32 bits logical addressing and 12 

bits page addressing. A logical address is divided into a 

page number consisting of 20 bits and a page offset 

consisting of 12 bits.  

 The page number is further divided into a 10-bit page 

number and a 10-bit page offset. Thus, a logical address is: 



D e p t  o f  C S E ,  M B I T S   Page 3 
 

 
where p1 is an index into the outer page table and P2 is the 

displacement within the page of the outer page table. 

 

 The next step would be a three-level or four-level paging 

scheme, where the second-level outer page table itself is 

also paged, and so on. 

 

Hashed Page Tables 
 

 A common approach for handling address spaces larger 

than 32 bits is to use a hashed page table with the hash 

value being the virtual page number.  



D e p t  o f  C S E ,  M B I T S   Page 4 
 

 Each entry in the hash table contains a linked list of 

elements that hash to the same location (to handle 

collisions).  

 Each element consists of three fields:  

(1) The virtual page number 

(2) Mapped page frame 

(3) Pointer next  

 

 The virtual page number in the virtual address is hashed 

into the hash table. The virtual page number is compared 

with field1 in the first element in the linked list.  

 If there is a match, the corresponding page frame (field2) is 

used to form the desired physical address.  

 If there is no match, subsequent entries in the linked list are 

searched for a matching virtual page number. 



D e p t  o f  C S E ,  M B I T S   Page 5 
 

Inverted Page Tables 
 

 Usually, each process has its own page table. In a 

multiprogramming system, it may not be possible to keep 

separate page tables for each process. So a common page 

table is maintained with process id associated with each 

entry 

 Same logical address may be generated for various 

processes 

 An inverted page table has one entry for each frame of 

memory. Each entry consists of the virtual address of the 

page stored in that real memory location; with information 

about the process that owns the page. 

 



D e p t  o f  C S E ,  M B I T S   Page 6 
 

 Each virtual address in the system consists of a triple: 

<process-id, page-number, offset>. 

 <process-id, page-number> is presented to the memory 

subsystem. The inverted page table is then searched for a 

match. If a match is found-say, at entry i-then the physical 

address <i, offset> is generated. If no match is found, then 

an illegal address access has been attempted. 

 Systems that use inverted page tables have difficulty in 

implementing shared memory.  

 Shared memory is implemented as multiple virtual 

addresses (one for each process) that are mapped to one 

physical address. This standard method cannot be used 

with inverted page tables; since there is only one entry for 

a frame and process id is associated with it. 

 

SEGMENTATION 
 

 Paging does not satisfy the users’ view of programs. 

Pages are scattered through the physical memory and 

they are equal sized physical partitions irrespective of 

user concerns 

 Segmentation is the logic division of programs rather 

than physical division 

 

 

 

 



D e p t  o f  C S E ,  M B I T S   Page 7 
 

Basic Method 
 

 A program can be made with a set of methods, procedures, 

or functions. It may also include various data structures: 

objects, arrays, stacks, variables, and so on. Each of these 

modules or data elements is referred by name. We talk 

about "the stack," "the math library," "the main program" 

etc without caring what addresses in memory these 

elements occupy. 

 Each of these segments is of variable size. Elements within 

a segment are identified by their offset from the beginning 

of the segment: Eg: fifth instruction of the Sqrt (). 

 



D e p t  o f  C S E ,  M B I T S   Page 8 
 

 Segmentation is a memory-management scheme that 

supports user view of memory.  

 A logical address space is a collection of segments.  

 Each segment has a name and a length.  

 The addresses specify both the segment name and the 

offset within the segment.  

 The user therefore specifies each address by two quantities: 

a segment name and an offset.  

 Contrast this scheme with the paging scheme, in which the 

user specifies only a single address, which is partitioned by 

the hardware into a page number and an offset, all invisible 

to the programmer. 

 For simplicity of implementation, segments are numbered  

 Thus, a logical address consists of a two tuple: 

 <segment-number, offset>. 

 Normally, when a program is compiled, the compiler 

automatically constructs segments reflecting the input 

program. 

 A C compiler might create separate segments for the 

following: 

1. The code 

2. Global variables 

3. The heap, from which memory is allocated 

4. The stacks used by each thread 

5. The standard C library 

 

 



D e p t  o f  C S E ,  M B I T S   Page 9 
 

Hardware 
 

 User can refer to objects in the program by a two-

dimensional address, but the actual physical memory is 

still a one-dimensional sequence of bytes.  

 We must define an implementation to map two 

dimensional user-defined addresses into one-dimensional 

physical addresses. This mapping is effected by a segment 

table 

 Each entry in the segment table has a segment base and a 

segment limit. The segment base contains the starting 

physical address where the segment resides in memory, 

and the segment limit specifies the length of the segment. 

 



D e p t  o f  C S E ,  M B I T S   Page 10 
 

 A logical address consists of two parts: a segment number, 

s, and an offset into that segment, d. 

 The segment number is used as an index to the segment 

table. The offset d of the logical address must be between 0 

and the segment limit. If it is not, we trap to the OS error 

 When an offset is legal, it is added to the segment base to 

produce the address in physical memory of the desired 

byte. The segment table is thus essentially an array of base-

limit register pairs. 

 



D e p t  o f  C S E ,  M B I T S   Page 11 
 

 For example, segment 2 is 400 bytes long and begins at 

location 4300. Thus, a reference to byte 53 of segment 2 is 

mapped onto location 4300 +53= 4353. 

 

COMPARISON BETWEEN PAGING & SEGMENTATION 
 

Paging 
 

1. Logical Memory is divided into pages and physical 

memory is divided into frames 

2. Division is physical 

3. All pages/frames are equal sized 

4. There is no external fragmentation (Since all partitions 

are equal) 

5. Internal fragmentations may be there (Since all partitions 

are equal) 

6. Memory manager maintains page tables 

7. Page table contains page number, frame number and 

protection bits 

8. CPU/User generate direct logical address 

9. Paging does not satisfy users view 
 

Segmentation 
 

1. Logical Memory and physical memory are divided into 

segments 

2. Division is logical 

3. Segments are of variable size 



D e p t  o f  C S E ,  M B I T S   Page 12 
 

4. There may be external fragmentation (Since all partitions 

are variable sized) 

5. Internal fragmentations may not be there (Since 

partitions are done as per needs) 

6. Memory manager maintains segment tables 

7. Segment table contains segment limit and base 

8. CPU/User generate segment name and displacement as 

virtual address 

9. Segmentation satisfies users view 

 

VIRTUAL MEMORY 
 

 An entire process is to be in memory before it can execute. 

 Virtual memory is a technique that allows the execution 

of processes that are not completely in memory.  

 One major advantage of this scheme is that programs can 

be larger than physical memory.  

 Virtual memory abstracts main memory into an 

extremely large, uniform array of storage, separating 

logical memory as viewed by the user 

 Virtual memory also allows processes to share files easily 

and to implement shared memory.  

 Users would be able to write programs for an extremely 

large virtual address space, irrespective of the memory 

requirement tensions. 

 Virtual memory is not easy to implement 



D e p t  o f  C S E ,  M B I T S   Page 13 
 

 Dynamic loading can help to increase the memory 

utilization, but it generally requires special precautions and 

extra work by the programmer. But another technique 

called demand paging is used for virtual memory 

management 

 

 
 

 

 

 

 

DEMAND PAGING 

 

 This strategy is to load pages only as they are needed. 

(on demand) 

 Programs are divided into pages and kept in storage. 



D e p t  o f  C S E ,  M B I T S   Page 14 
 

 Pages are only loaded when they are demanded during 

program execution; pages that are never accessed are thus 

never loaded into physical memory. 

 A demand-paging system is similar to a paging system 

with swapping and dynamic loading where processes 

reside in secondary memory (usually a disk). 

 When we want to execute a process, we swap it into 

memory. Rather than swapping the entire process into 

memory, however, we use a lazy swapper.  

 A lazy swapper never swaps a page into memory unless 

that page will be needed. A pager and swapper work in 

demand paging 

 When a process is to be swapped in, the pager guesses 

which pages will be used before the process is swapped out 

again.  

 Instead of swapping in a whole process, the pager brings 

only those pages into memory. 

 When valid-invalid bit is set to "valid” the associated 

page is both legal and in memory.  

 If the bit is set to "invalid” the page either is not valid 

(that is, not in the logical address space of the process) or 

is valid but is currently on the disk, not in memory. 

 While the process executes and accesses pages that are 

memory resident, execution proceeds normally. 



D e p t  o f  C S E ,  M B I T S   Page 15 
 

 But what happens if the process tries to access a page 

that was not brought into memory? Access to a page 

marked invalid causes a Page Fault.  

 The paging hardware will cause a trap to the operating 

system. This trap is the result of the operating system's 

failure to bring the desired page into memory. 

 The procedure for handling this page fault is 

straightforward 

1. Check an internal table (usually kept with the process 

control block) for this process to determine whether the 

reference was a valid or an invalid memory access. 

2. If the reference was invalid, we terminate the process. If it 

was valid, but we have not yet brought in that page, want 

to swap it in. 

3. Find a free frame in memory 

4. Schedule a disk operation to read the desired page into the 

frame. 

5. Modify the internal table kept with the process and the 

page table to indicate that the page is now in memory. 

6. Restart the instruction that was interrupted by the trap. The 

process can now access the page as though it had always 

been in memory. 



D e p t  o f  C S E ,  M B I T S   Page 16 
 

 

 In the extreme case, we can start executing a process with 

no pages in memory. Pages may be loaded to memory if 

and only if fault occurs. This scheme is called pure 

demand paging. ie never bring a page into memory 

until it is required. 

 The hardware to support demand paging is the same as the 

hardware for paging and swapping: 

 Secondary memory holds those pages that are not present 

in main memory. The secondary memory is usually a high-

speed disk. It is known as the swap device, and the 

section of disk used for this purpose is known as swap 

space 

 A crucial requirement for demand paging is the ability to 

restart any instruction after a page fault. 



D e p t  o f  C S E ,  M B I T S   Page 17 
 

 If the page fault occurs on the instruction fetch, we can 

restart by fetching the instruction again.  

 If a page fault occurs while we are fetching an operand, we 

must fetch and decode the instruction again and then fetch 

the operand. 

 

Performance of Demand Paging 

 

 Demand paging can significantly affect the performance of 

a computer system. 

 Let's compute the effective access time for a demand-

paged memory. 

 Let the memory-access time is denoted as ma.  

 As long as we have no page faults, the effective access 

time is equal to the memory access time.  

 If a page fault occurs, we must first read the relevant page 

from disk and then access the desired location. 

 Let p be the probability of a page fault (0 ≤ p ≤ 1). We 

would expect p to be close to zero-that is, we would expect 

to have only a few page faults.  

 Then  

effective access time = (1 - p) x ma + p x page fault time. 

 Page fault leads to 6 extra steps. 

 It can be considered as 3 major steps 

1. Service the page-fault interrupt. 

2. Swap in the page. 



D e p t  o f  C S E ,  M B I T S   Page 18 
 

3. Restart the process. 

 The first and third tasks can be reduced, with careful 

coding, but data transfer time, step 2 (from disk to 

memory) is crucial. 

 By statistical analysis, the transfer time is close to 8 

milliseconds. (A typical hard disk has an average latency 

of 3 milliseconds, a seek time of 5 milliseconds, and a 

transfer time of 0.05 milliseconds. Thus, the total paging 

time is about 8 milliseconds, including hardware and 

software time.) 

 We assume that there is no delay of accessing the devices 

(disk or frame or page table). If a queue of processes is 

waiting for the device, we have to add device-queuing time 

as we wait for the paging device to be free to service our 

request, increasing even more the time to swap. 

 Average memory access time of a system is 200 nano 

seconds. 

effective access time = (1 - p) x (200) + p (8 milliseconds) 

(in nano seconds)  = (1 - p) x (200) + p x 8,000,000 

= 200 – p x 200 + p x 8,000,000 

= 200 + 7,999,800 x p. 

 Effective access time is directly proportional to the page 

fault rate 

 If one access out of 1,000 causes a page fault, then p = 

1/1000 = 0.001 



D e p t  o f  C S E ,  M B I T S   Page 19 
 

 Then the effective access time is 8,199.8 nano seconds = 

8.2 milli seconds 

 That is instead of 200 nano seconds (for direct memory 

access) we need 8200 nano seconds. 

 Performance degradation factor is 8200/200 = 41 

 If we want to keep performance degradation not more than 

10%, then max 200 + (10% of 200) = 200+20 = 220 

nanoseconds can be given.  

 Then 200 + 7,999,800 x p = 220 

p = 0.0000025 

 ie Number of page faults = 1 / 0.0000025 = 4,00,000 per 

access 

 That is, to manage the slowdown due to demand paging at 

a reasonable level, we can allow fewer than 1 page fault in 

4,00,000 memory accesses 

 


